
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/263975301

TOWARD A UNIFIED ENGLISH-LIKE REPRESENTATION OF

SEMANTIC MODELS, DATA, AND GRAPH PATTERNS FOR

SUBJECT MATTER EXPERTS

Article in International Journal of Semantic Computing · April 2014

DOI: 10.1142/S1793351X13500025

CITATIONS

24
READS

335

2 authors, including:

Andrew Crapo

General Electric

30 PUBLICATIONS 203 CITATIONS

SEE PROFILE

All content following this page was uploaded by Andrew Crapo on 13 September 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/263975301_TOWARD_A_UNIFIED_ENGLISH-LIKE_REPRESENTATION_OF_SEMANTIC_MODELS_DATA_AND_GRAPH_PATTERNS_FOR_SUBJECT_MATTER_EXPERTS?enrichId=rgreq-ce481475e2a912bc9b168c3d7578cce8-XXX&enrichSource=Y292ZXJQYWdlOzI2Mzk3NTMwMTtBUzo1MzgxMTc4ODQxMjUxODRAMTUwNTMwODcwOTk1MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/263975301_TOWARD_A_UNIFIED_ENGLISH-LIKE_REPRESENTATION_OF_SEMANTIC_MODELS_DATA_AND_GRAPH_PATTERNS_FOR_SUBJECT_MATTER_EXPERTS?enrichId=rgreq-ce481475e2a912bc9b168c3d7578cce8-XXX&enrichSource=Y292ZXJQYWdlOzI2Mzk3NTMwMTtBUzo1MzgxMTc4ODQxMjUxODRAMTUwNTMwODcwOTk1MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ce481475e2a912bc9b168c3d7578cce8-XXX&enrichSource=Y292ZXJQYWdlOzI2Mzk3NTMwMTtBUzo1MzgxMTc4ODQxMjUxODRAMTUwNTMwODcwOTk1MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew-Crapo?enrichId=rgreq-ce481475e2a912bc9b168c3d7578cce8-XXX&enrichSource=Y292ZXJQYWdlOzI2Mzk3NTMwMTtBUzo1MzgxMTc4ODQxMjUxODRAMTUwNTMwODcwOTk1MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew-Crapo?enrichId=rgreq-ce481475e2a912bc9b168c3d7578cce8-XXX&enrichSource=Y292ZXJQYWdlOzI2Mzk3NTMwMTtBUzo1MzgxMTc4ODQxMjUxODRAMTUwNTMwODcwOTk1MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/General-Electric?enrichId=rgreq-ce481475e2a912bc9b168c3d7578cce8-XXX&enrichSource=Y292ZXJQYWdlOzI2Mzk3NTMwMTtBUzo1MzgxMTc4ODQxMjUxODRAMTUwNTMwODcwOTk1MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew-Crapo?enrichId=rgreq-ce481475e2a912bc9b168c3d7578cce8-XXX&enrichSource=Y292ZXJQYWdlOzI2Mzk3NTMwMTtBUzo1MzgxMTc4ODQxMjUxODRAMTUwNTMwODcwOTk1MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew-Crapo?enrichId=rgreq-ce481475e2a912bc9b168c3d7578cce8-XXX&enrichSource=Y292ZXJQYWdlOzI2Mzk3NTMwMTtBUzo1MzgxMTc4ODQxMjUxODRAMTUwNTMwODcwOTk1MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

TOWARD A UNIFIED ENGLISH-LIKE REPRESENTATION

OF SEMANTIC MODELS, DATA, AND GRAPH PATTERNS

FOR SUBJECT MATTER EXPERTS

ANDREW CRAPO* and ABHA MOITRA†

GE Global Research

Niskayuna, NY 12309, USA
*crapo@research.ge.com

†abha.moitra@research.ge.com

The Semantic Application Design Language (SADL) combines advances in standardized

declarative modeling languages based on formal logic with advances in domain-speci¯c

language (DSL) development environments to create a controlled-English language that
translates directly into the Web Ontology Language (OWL), the SPARQL graph query

language, and a compatible if/then rule language. Models in the SADL language can be

authored, tested, and maintained in an Eclipse-based integrated development environment

(IDE). This environment o®ers semantic highlighting, statement completion, expression tem-
plates, hyperlinking of concepts to their de¯nition, model validation, automatic error correc-

tion, and other advanced authoring features to enhance the ease and productivity of the

modeling environment. In addition, the SADL language o®ers the ability to build in validation
tests and test suites that can be used for regression testing. Through common Eclipse func-

tionality, the models can be easily placed under source code control, versioned, and managed

throughout the life of the model. Di®erences between versions can be compared side-by-side.

Finally, the SADL-IDE o®ers an explanation capability that is useful in understanding what
was inferred by the reasoner/rule engine and why those conclusions were reached. Perhaps

more importantly, explanation is available of why an expected inference failed to occur. The

objective of the language and the IDE is to enable domain experts to play a more active and

productive role in capturing their knowledge and making it available as computable artifacts
useful for automation where appropriate and for decision support systems in applications that

bene¯t from a collaborative human-computer approach. SADL is built entirely on open source

code and most of SADL is itself released to open source. This paper explores the concepts
behind the language and provides details and examples of the authoring and model lifecycle

support facilities.

Keywords: Controlled English; graph pattern; ontology; OWL; semantic model.

1. Introduction

`̀ Model" means di®erent things to di®erent people. One interesting use of the word is

in the phrase `̀ mental model". People are arguably pretty good at organizing their

observations and perceptions of the world into models in their minds that allow them

International Journal of Semantic Computing
Vol. 7, No. 3 (2013) 215–236

°c World Scienti¯c Publishing Company

DOI: 10.1142/S1793351X13500025

215

http://dx.doi.org/10.1142/S1793351X13500025

to explain the past and the present and predict the future. It's how we survive and

are able to thrive. Creating and revising mental models seems to happen very

naturally and usually without a lot of conscious e®ort ��� it is what we do with our

over-sized brains!

It's often a di®erent matter when we try to communicate our mental models to

others. It usually takes a substantial amount of e®ort on the part of both the giver

and the receiver for one person's model to be understood by another. The manner of

communication normally requiring the least amount of conscious e®ort is verbal

communication. That part of our brain is well exercised. But if we want to persist the

externalization of our mental model in an artifact of some kind, the e®ort usually

goes up substantially. Of course we can just record the audio or video of our

explanations of our thinking, but if you've tried to do that in a way that you are

satis¯ed with in the end you have probably found it required considerable e®ort. For

millennia the standard way of preserving our models has been through writing.

Writing can be hard work indeed.

The next level of di±culty, relatively new to the human experience, is to capture

our models in computable artifacts so that machines can use our models to draw the

same conclusions that we would have drawn, given a particular scenario. There are a

variety of ways of doing this ranging from writing procedural programs to creating

spreadsheets to creating declarative models in a formal logic language. This paper

will explore ways to enhance our ability to accomplish the latter with less e®ort and

with results that are more maintainable, leading to longer useful model life. While

there are a variety of logical, declarative modeling languages such as Prolog and the

Common Logic family, we will use the Web Ontology Language (OWL) [15] as an

example, along with its companion query language SPARQL [20] and a repre-

sentative rule language.

The purpose of the work reported in this paper is to make it easier and more

e®ective for subject matter experts (SMEs), also known as domain experts, to cap-

ture knowledge in a logic-based and if/then rule-based modeling environment

(OWL þ SPARQL þ rules). We will identify and illustrate a number of approaches

that we have used in striving to achieve this goal. Some of these solutions are

embodied in an English-like (controlled-English) language called the Semantic

Application Design Language (SADL) [18]. Other solutions are implemented in an

Eclipse-based integrated development environment (IDE) called the SADL-IDE. In

discussing each signi¯cant aspect of our approach we will discuss the concept,

illustrate model implementations where appropriate in OWL, and then illustrate

how we have improved things for the modeler using SADL and/or the SADL-IDE.

We will begin with the underpinnings of declarative, graph-based modeling and the

design principles underlying SADL in Secs. 2 and 3. In Sec. 4 we will delve into the

capabilities of the IDE. In Sec. 5 we will brie°y mention and compare SADL to other

controlled-English languages. Finally in Sec. 6 we will brie°y describe three di®erent

applications of SADL in real-world projects.

216 A. Crapo & A. Moitra

2. The World (in Our Head) Is a Graph

To set the stage let us talk about the nature of models. It is theorized that people's

mental models are associative in nature and can be represented as directed graphs

[7– 9]. Many of the nodes in our mental graph correspond to abstractions ��� patterns

that we have identi¯ed and to which we have given names. One kind of abstraction is

what we often call types or classes. Formalizations of this abstraction are often based

on set theory. Examples of classes are trees, rocks, people, cars, languages, etc.

Another kind of abstraction forms the edges in our graph. These are types of

associations, relationships, or characteristics (attributes), all of which we will call

properties, that we `̀ see" in the world. Examples of properties include friend, spouse,

child, employer, owner, author, age, height, weight, etc. Graph edges are visible in

Fig. 1.

Class abstractions can further be divided into classes whose members are de¯ned

by their intrinsic characteristics and classes whose members are de¯ned by their

relationship to other things. For example, a person can be further classi¯ed as a man

or a woman based on intrinsic characteristics ��� the classi¯cation can be performed

by looking at the thing itself. On the other hand, a person can be classi¯ed as a

mother or a friend only by looking at relationships between the thing and other

things. These two ways of classifying are what Sowa calls `̀ ¯rstness" and `̀ sec-

ondness", attributing the concepts and the names to Charles Peirce [19]. Secondness

is also often called `̀ roles". A role is a classi¯cation based on participation in a

relationship.

Let us start with the very simple graph shown in Fig. 1. Since OWL has no innate

temporal modeling capability, we will ignore time and all English representations will

be in present tense.

It is interesting to consider the various ways that one might represent these

constructs in the English language. Such a text might go something like this. `̀ The

man Abraham is a US president. He is married to a woman named Mary. They have

a child named Robert who's birthdate is August 1, 1843."

Now let us represent the same information as an OWL snippet. We will use the

RDF N3 format [14] in Fig. 2 as it is a more terse representation than RDF/XML or

Fig. 1. A graph of some genealogical information.

Uni¯ed English-Like Representation of Semantic Models, Data, and Graph Patterns 217

N-Triple and actually has some of the same kinds of compression of graph triples as

does SADL ��� as explained later in this paper.

As our ¯rst introduction to SADL, we represent the same information as a SADL

snippet in Fig. 3. Note that class names are in dark blue bold, property names are in

green bold, instances (individuals) are in light blue, and literals have a grey back-

ground. Keywords in the language are in maroon, although keywords may also be

used as non-keywords by escaping them with a preceding `̀^" (caret). Concept

(class, property, instance) names cannot have spaces but can use underscores or

hyphens. Names must start with an alpha character, not with a number, to comply

with XML URI requirements. In our examples we will use the OWL convention of

capitalizing class and instance names and not capitalizing property names, but there

is no requirement to do so. The language is case-sensitive; `̀ child" and `̀ Child" are

not the same concept. As we noted above, this is actually useful in trying to mimic

English constructs where the role played (`̀ Child") is a noun (class) but the predicate

(`̀ child") identi¯es an association. There are multiple ways that this text could be

structured in SADL but each renders the same OWL model ��� the one shown in

Fig. 3.

The bit of English text given in the three sentences following Fig. 1 is deceptively

simple because it uses many concepts that each of us already has de¯ned, more or

less similarly, in our own mental models. To make this small model into a

computable artifact, `̀ understandable" by machines as well as people, these concept

de¯nitions (the t-box in semantic modeling terms) must be explicit and available to

lincolns:Robert
 a gen:Person ;
 gen:birthdate "1843-08-01"^^xsd:date .
lincolns:Mary
 a gen:Woman ;
 gen:child lincolns:Robert .
lincolns:Abraham
 a [a owl:Class ;
 owl:intersectionOf (gen:Man gen:US_President)

] ;
 gen:child lincolns:Robert ;
 gen:married lincolns:Mary .

Fig. 2. Our simple graph in OWL RDF N3 format.

Abraham is a{Man and US_President},
married (a Woman Mary with child (a Person Robert

with birthdate "August 1, 1843")),
has child Robert.

Fig. 3. Our simple graph in SADL.

218 A. Crapo & A. Moitra

anyone/anything reading this instance data model (a-box in semantic modeling

terms). Figures 4 and 5 show the concept de¯nitions used in Figs. 2 and 3 in OWL

and SADL, respectively. These ¯gures include the header information where

namespaces and pre¯xes are de¯ned.

Let us note some of the constructs of the SADL language that make it more like

natural language and/or easier for SMEs to understand.

(1) Optional quali¯ed name. The identi¯ers of named concepts in OWL/RDF are

URIs. A URI consists of a namespace and a local name separated by a `̀ #"

symbol. A pre¯x can be de¯ned as an alias for a namespace, allowing named

concepts to be expressed unambiguously as quali¯ed names — a pre¯x

followed by a local name, separated by a colon as illustrated in Figs. 2 and 4,

@prefix rdfs: <http://www.w3.org/2000/01/rdf -schema#> .
@prefix gen: <http://sadl.org/TestSadlIde/geneology#> .
@prefix owl: <http://www.w3.org/2002/07/owl# > .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
rdfs:comment "This ontology was created from a SADL file 'genealogy.sadl'

and should not be edited."@en ;
owl:versionInfo "$Revision:$ Last modified on $Date:$" .
<> a owl:Ontology ;
gen:Male a gen:Gender .
gen:Female a gen:Gender .
gen:Gender a owl:Class ; owl:equivalentClass [a owl:Class ; owl:oneOf (gen:Male gen:Female)] .
gen:Person a owl:Class ;
 rdfs:subClassOf [a owl:Restriction ; owl:maxCardinality "1"^^xsd:int ; owl:onProperty gen:gender];

rdfs:subClassOf [a owl:Restriction; owl:maxCardinality "1"^^xsd:int ; owl:onProperty gen:birthdate] .

gen:birthdate a owl:DatatypeProperty ; rdfs:domain gen:Person ; rdfs:range xsd:date .
gen:gender a owl:ObjectProperty ; rdfs:domain gen:Person ; rdfs:range gen:Gender .
gen:child a owl:ObjectProperty ; rdfs:domain gen:Person ; rdfs:range gen:Person .
gen:married a owl:ObjectProperty ; rdfs:domain gen:Person ; rdfs:range gen:Person .
gen:Man a owl:Class ;

rdfs:subClassOf gen:Person ;
 owl:equivalentClass [a owl:Class ; owl:intersectionOf (gen:Person [a owl:Restriction ;

owl:hasValue gen:Male ;
owl:onPropertygen:gender

])] .
gen:Woman a owl:Class ;

rdfs:subClassOf gen:Person ;
 owl:equivalentClass [a owl:Class ; owl:intersectionOf (gen:Person [a owl:Restriction ;

owl:hasValue gen:Female ;
owl:onProperty gen:gender

gen:Parent a owl:Class ;
rdfs:subClassOf gen:Person ;
owl:equivalentClass [a owl:Class ; owl:intersectionOf (gen:Person [a owl:Restriction ;

owl:minCardinality "1"^^xsd:int ;
owl:onProperty gen:child

])] .

])] .
gen:US_President a owl:Class ; rdfs:subClassOf gen:Person .

Fig. 4. Concept de¯nitions in OWL RDF N3 format.

Uni¯ed English-Like Representation of Semantic Models, Data, and Graph Patterns 219

e.g. `̀ owl:Class". In many usages concept names are unique within the set of

namespaces referenced by a model. SADL allows the use of quali¯ed names but

does not require it unless the local name is not unique in the context. This makes

the SADL statements more readable and the translator is responsible for creating

quali¯ed names and complete URIs in the generated RDF syntax. (The content

of Figs. 2 and 4 was generated automatically by SADL.)

(2) Compound statements. It is not necessary to repeat the subject for each RDF

statement (subject ! predicate ! object). For example, the subject Abraham

in Fig. 3, line 1, is the subject of three statements. Note that the RDF N3 syntax,

unlike RDF/XML and N-Triple syntax, also allows the same kind of multiple

statements with a single subject as shown in Fig. 2.

(3) Filler words. There are optional ¯ller words in SADL that make the phrases more

English-like. For example, the phrase `̀ Mary has child Robert" could also have

been written as the raw triple `̀ Mary child Robert" but the `̀ has" makes it sound

more natural. (Note that we do not allow `̀ Mary has a child Robert" because

that form is actually using `̀ child" as a role class (`̀ a child" expresses a classi¯-

cation of `̀ Robert"), not as a predicate, and the predicate in this phrase is the

ambiguous `̀ has".) However, `̀ has" does not always sound natural, depending on

the type of the English verb equivalent. For example, the phrase `̀ Abraham

married Mary", which uses a transitive action verb, does not need a ¯ller. In

compound statements the ¯ller word `̀ with" instead of `̀ has" sometimes makes

the phrase more natural, as in `̀ . . . with birthdate . . .".

(4) Embedded de¯nitions. The embedding of new de¯nitions in parenthetical

expressions is a compromise. Normally in English we might say something like

`̀ Abraham married a woman named Mary." It is implicit in this sentence that we

have not previously encountered Mary and we are being told, since it is our ¯rst

encounter, that she is a woman. The parentheses cue the SADL parser that this is

a new de¯nition.

uri "http://sadl.org/TestSadlIde/genealogy"
alias gen version"$Revision:$ Last modified on $Date:$".

Person is a class,
described by birthdate with a single value of type date,
described by gender with a single value of type Gender,
described by child with values of type Person,
described by married with values of type Person.

Gender is a class, must be one of {Male, Female}.

A Person is a Man only if gender always has value Male.
A Person is a Woman only if gender always has value Female.
A Person is a Parent only if child has at least 1 value.

Fig. 5. Concept de¯nitions in SADL.

220 A. Crapo & A. Moitra

In summary, associative networks are graphs and graph patterns are what we per-

ceive and what we communicate about. Natural language is a graph language with

many di®erent forms and many shortcuts to reduce verbosity, many of which

introduce ambiguity. With some signi¯cant restrictions, natural language (e.g.

English) can be an unambiguous yet powerful representation capturing the knowl-

edge of a domain as a semantic model.

3. More about Formal, Graph-Based Models and How They

Di®er from Informal Models

There are two important observations to note about graph-based models, observable

in our natural language, that must be taken into account in constructing a formal

modeling language. One has to do with how we identify things and the second has to

do with how we express patterns useful in asking questions or expressing conditional

statements, the natural-language equivalent of rules.

3.1. Identity by association

Most things in our models of the world do not have unique identi¯ers ��� they are

identi¯ed by association with those things which do have identi¯ers. For big things,

we create identi¯ers to make them easier to track. An automobile has a vehicle

identi¯cation number (VIN). Most jurisdictions require that it have a license plate

a±xed to make its identity visible from some distance. The smaller things, however,

have no unique identity other than the relationships that provide the context of their

existence. Hence I might refer to `̀ my eye glasses" or `̀ my computer glasses" or `̀ my

pen" or `̀ my shirt". Even when there is identity it is not necessarily easy to use that

identity for everyday purposes. Hence we say `̀ Please come to dinner at my house."

Or, `̀ Can we drive your car to the restaurant?" `̀ My computer" is usually understood

to be the one in my possession. It is our experience that any modeling system that

requires that the modeler provide a unique identity for each thing modeled will be

found to be very cumbersome to use.

In semantic technology terms, things which are not named are represented by

blank nodes or bnodes. These nodes can be retrieved from the graph by their

associations. In the example of Fig. 2 we saw that we can de¯ne an instance in-line or

parenthetically. In Fig. 2 the parenthetically de¯ned instances have names but SADL

does not require this. In SADL unnamed instances are supported, although creating

bnodes is usually only sensible in the context of identifying associations. For example,

suppose that Abraham owned an axe and we wished to capture that information. We

might say, Similarly, if we did not know or did not wish

to explicitly name the woman whom Abraham married we could have dropped

`̀ Mary" from the parenthetical phrase after `̀ married". In either case a typed bnode

would be created, identi¯able only (without `̀ insider information" about system-

generated identi¯ers) by its association with the Abraham node.

Uni¯ed English-Like Representation of Semantic Models, Data, and Graph Patterns 221

3.2. Patterns and variables

Natural language questions often contain graph patterns. For example, one might

ask, regarding the information in Fig. 1, `̀ To whom is Abraham married?" `̀ Robert is

a child of whom?" If we were creating a graph query language from scratch, we might

translate these question into queries such as `̀ Abraham married ?" and `̀ ? child

Robert" where the `̀ ?" indicates values to be retrieved from the graph in answering

the query. In some graph query languages each placeholder is given a name and is

called a variable. It is necessary to name the variables so that the graph patterns will

be unambiguous. For example, suppose that we asked the question, `̀ What is the

birthdate of the person to whom Abraham is married?" Without names this pattern

would be `̀ Abraham married ? and ? birthdate ?" and it is unclear that there are two

di®erent variable bindings implied. One can easily construct more complex graph

patterns that make it even clearer that we need to be able to match the unbound

variable in one graph pattern element (node ! edge ! node) with that in another.

In this case we mean `̀ Abraham married ?p and ?p birthdate ?x". Note that the

naming of the variables can be entirely arbitrary; it only matters that the same

names are used when linking elements together. Using SPARQL syntax, where

conjunction of graph elements is indicated by a dot, the example questions are (pre¯x

de¯nitions omitted):

(1) Select ?x where f<lincolns:Abraham><gen:married> ?xg
(2) Select ?p where f?p <gen:child><lincolns:Robert>g
(3) Select ?p ?x where f<lincolns:Abrahm><gen:married> ?p � ?p <gen:birthdate>

?xg
The `̀ whom" in the English questions are pronouns that play the role of unbound

variables; unbound because before our brain or the query engine processes the query

no values are bound to the variables. Only in the results are the variables bound to

lists of possible values for each variable. In these examples, the results from Fig. 3

would be:

(1) x is Mary (a table with one column labeled `̀ x" and one row with value Mary)

(2) p is fMary, Abrahamg (a table with one column labeled `̀ p" and two rows, Mary

and Abraham)

(3) an empty table with columns `̀ p" and `̀ x"; empty because Mary has no birthdate

in the data graph of Fig. 3

In SADL graph patterns can be expressed using simple names (that are not already

used for concepts) as variables. Names interpreted as variables are colored pink. If

the values to be returned are unambiguous, the `̀ select . . . where" can be dropped. A

graph pattern to be treated as a query is preceded by `̀ Ask:". Hence the queries

above expressed in SADL are:

222 A. Crapo & A. Moitra

The select variables are explicit in the 3rd example because we want both variables to

be represented in the table of returned values.

Thinking of graph patterns in terms of named variables is not very much like

natural language. One of the ways that English avoids using variables while avoiding

ambiguity is through a chaining of triple patterns. For example, we might say,

`̀ What is the birthdate of the child of Abraham?" Note that the only pronoun in this

sentence is the interrogative pronoun `̀ what", which acts as a variable in this

question. To better understand chaining of triple patterns, consider three ways of

stating a triple in SADL, using `̀ s p o" as the triple where `̀ s" is the subject, `̀ p" is the

predicate, and `̀ o" is the object.

(1) s [has j with] p o (ex: Abraham has child Robert) (the `̀ has" or `̀ with" are

optional)

(2) [a j the] p of s is o (ex: a child of Abraham is Robert) (the `̀ a" or `̀ the" is optional)

(3) o is [a j the] p of s (ex: Robert is a child of Abraham) (the `̀ a" or `̀ the" is optional)

Note that alternate forms (2) and (3) do not work well with all predicates, e.g. the

predicate `̀ married" does not make a natural sounding phrase with syntax (2)

and (3).

Revisiting the question `̀ What is the birthdate of the child of Abraham?", the

SPARQL equivalent is `̀ select ?bd where f<lincolns:Abraham><gen:child> ?c � ?c

<gen:birthdate> ?bdg". Taking these two triple patterns and rewriting them in the

form 3) above:

(1) ?c is the child of Abraham

(2) ?bd is the birthdate of ?c

The ¯rst of these two statements is like an equation: `̀ ?c ¼ the child of Abraham".

Substituting the right hand side of this equality in for `̀ ?c" in the second statement

yields `̀ ?bd is the birthdate of the child of Abraham". Substituting the interrogative

pronoun `̀ what" for `̀ ?bd" gives us the original English question. We have success-

fully eliminated the variable `̀ ?c".

As a somewhat extreme example of chaining of triple patterns to eliminate any

explicit variables, consider the graph pattern shown in Fig. 6. In English we might

say `̀ George was born at a location with the same latitude as Philadelphia, was born

a Birth (with location with latitude == latitude of Philadelphia) with child George
(with mother == mother of a Birth with child Samuel) with weight == weight of a
Birth with child Ruby

Fig. 6. A complex SADL graph pattern with all variables eliminated.

Uni¯ed English-Like Representation of Semantic Models, Data, and Graph Patterns 223

to the same mother as Samuel, and had the same weight as Ruby." Figure 7 shows

the pattern de¯ned by the expression in Fig. 6 as a visual graph. In terms of a

SPARQL query, the blank rectangles in Fig. 7 are unbound variables whose values

will be literals, the blank ovals are unbound variables whose values will be instances,

and the yellow oval is the default bindings returned if this expression is interpreted as

a query. The equivalent symbols (`̀ ¼ ¼") in the expression and graph translates into

owl:sameAs for object properties (values are instances) or to a SPARQL equals ¯lter

for data properties (values are literals). The equivalent SPARQL query is (most

namespaces eliminated)

Select ?b1 where f
?b1 <rdf:type><Birth> � ?b1 <location> ?loc1 � ?loc1 <latitude> ?l1 �
<Philadelphia><latitude> ?l2 � ?b1 <child><George> � ?b1 <mother> ?m1 �
?b2 <rdf:type><Birth> � ?b2 <mother> ?m2 � ?m1 <owl:sameAs> ?m2 �
?b2 <child><Samuel> � ?b1 <weight> ?w1 � ?b3 <rdf:type><Birth> �
?b3 <weight> ?w2 � ?b3 <child><Ruby> �
FILTER (equals(?l1, ?l2) && equals(?w1, ?w2))g

Graph patterns and variables are also used in expressing rules using the concepts

de¯ned in the domain model. SADL has a plug-in architecture allowing any com-

patible reasoner, rule engine, and query engine to be used as long as a translator from

SADL to the required representations is also provided. The default reasoner/rule

engine/query engine for the SADL-IDE is OWL/Jena/ARQ: OWL for the domain

model, Jena Rules [2] for rules, and SPARQL for queries. Alternatives would be

Pellet, using OWL/SWRL/SPARQL, and AllegroGraph [1] using RDF/Prolog/

(Prolog or SPARQL).

To illustrate a rule using the t-box model of Figs. 4 and 5, we add one additional

property de¯nition for `̀ uncle" and then create a rule that infers uncle relationships

from class membership (Man) and `̀ child" relationships. The de¯nition and the rule

in SADL are shown in Fig. 8. The rule element `̀ p !¼ s" is necessary so that a father

Fig. 7. A complex graph pattern with unbound variable nodes and equivalences.

224 A. Crapo & A. Moitra

is not inferred to be an uncle of his child. The colon after the rule name is optional

as is the formatting on one or multiple lines. The `̀ given" triple patterns normally

translate to the rule premises just like `̀ if " patterns and is syntactic sugar. For

comparison, the Jena rule created by the translator from this SADL rule is shown in

Fig. 9. The graph patterns used in rules can also be made more human-readable by

eliminating variables through chaining of triple patterns. The genealogy example of

Fig. 5 does not lend itself to an example so we will draw one from the domain of

geometric shapes. Figure 10 shows a rule, in SADL and Jena format, for the area of a

parallelepiped.

uncle describes Person with values of type Man.

Rule UncleRule:
given s is a Man
if gp has child s

gp has child p
p != s
p has child c

then c has uncle s.

Fig. 8. De¯nition of `̀ uncle" property and rule to infer containing statements.

[UncleRule: (?s rdf:type http://sadl.org/TestSadlIde/genealogy#Man),
(?gp http://sadl.org/TestSadlIde/genealogy#child ?s),
(?gp http://sadl.org/TestSadlIde/genealogy#child ?p), notEqual(?p, ?s),
(?p http://sadl.org/TestSadlIde/genealogy#child ?c)
-> (?c http://sadl.org/TestSadlIde/genealogy#uncle ?s)]

Fig. 9. Jena rule equivalent of the SADL rule in Fig. 8.

Rule AreaOfParallelepiped:
if x is a Parallelepiped
then the volume of x is the height of x* the width of x* the depth of x.

[AreaOfParallelepiped:
(?x rdf:type http://sadl.org/TestSadlIde/temp#Parallelepiped),
(?x http://sadl.org/TestSadlIde/temp#height ?v0),
(?x http://sadl.org/TestSadlIde/temp#width ?v1), product(?v0, ?v1, ?v2),
(?x http://sadl.org/TestSadlIde/temp#depth ?v3), product(?v2, ?v3, ?v4)
-> (?x http://sadl.org/TestSadlIde/temp#volume ?v4)]

Fig. 10. Rule, SADL and Jena formats, to compute the area of a parallelepiped.

Uni¯ed English-Like Representation of Semantic Models, Data, and Graph Patterns 225

The kind of chaining here is a little di®erent than in the queries above. Form (3) of

the triple pattern, e.g. `̀ ? is height of x", is taken as an equivalence and `̀ height of x"

is substituted into the multiplication operation. The result is the same ��� the only

variable in the SADL rule is that which is bound to instances of the class paralle-

lepiped. In the translation shown in the bottom of Fig. 10, all implied variables, of

which there are four, are made explicit.

4. Modeling A®ordances Provided by the SADL-IDE

Regardless of the modeling representation, e®ective tools are an important resource

for model developers and for overall life-cycle support. The SADL-IDE encompasses

a number of functionalities that support model development and maintenance.

4.1. Valid model is immediately computable, queryable and testable

One of the useful features of the SADL-IDE, although it is not unique to SADL, is

that once a valid model is built it is immediately a computable artifact that can be

reasoned over by a reasoner/rule engine, queried by a query engine, and tested in the

IDE. By tested we mean that we can express an expected conclusion and have the

IDE verify that that conclusion is in fact reached. This immediacy is useful in rapid

model development. To illustrate this point, suppose that we have the domain model

de¯ned in Fig. 5 with the content of Fig. 8 added. We will add the additional

information that Thomas is Abraham's father and that Tommy is Abraham's

brother. The complete instance data model, including the snippet previously shown

in Fig. 3, is shown in Fig. 11. Note that the SADL ¯le includes several queries and

two tests. The queries simply return data asserted in the model. The two tests check

to make sure that expected inferences have occurred. The ¯rst is true because of an

OWL entailment: every instance of a Man (or a US President) is also an instance of a

Person. The second is concluded by the rule previously discussed.

Once this data graph has been entered into the SADL-IDE, it can be `̀ executed"

with a single keystroke (alt-shift-t). The results of such an execution are shown in

Fig. 12. Through preference settings, various additional information including

derivations (discussed below) and reasoner timing information can be displayed

as well.

4.2. Continuous error checking and contextual help

Marking any errors or warnings found while processing the model is very helpful to

modelers. For example, suppose that we de¯ne a property with domain Person and

range Gender, but Gender has not been de¯ned. The error we get in the SADL-IDE is

shown in Fig. 13 (caused by commenting out the de¯nition of Gender on line 10).

Note that two quick ¯xes are available. The ¯rst will de¯ne Gender as a top-level

class, inserting the new de¯ning statement into the model. The second will de¯ne

226 A. Crapo & A. Moitra

uri "http://sadl.org/TestSadlIde/Lincolns"
alias lincolns version"$Revision:$ Last modified on $Date:$".

import "http://sadl.org/TestSadlIde/genealogy".

Abraham is a {Man and US_President},
married (a Woman Mary with child

(a Person Robert
with birthdate "August 1, 1843")),

has child Robert.

Thomas is a Person with child Abraham, with child (a Man Tommy).

Ask: Abraham married x.
Ask: P child Robert.
Ask: a child of Mary.
Ask: select p, x where Abraham married p and p has birthdate x.
Ask: select d where d is birthdate of child of Abraham.

Test: Abraham is a Person.
Test: Robert has uncle Tommy.

Fig. 11. Extended instance data in SADL with queries and tests.

Results for query 'select x where Abraham, married, x':
x = Mary

Results for query 'select P where P, child, Robert':
P
Abraham
Mary

Results for query 'select v0 where Mary, child, v0':
v0 = Robert

Results for query 'select p x where (Abraham, married, p) and (p, birthdate, x)':
no results found

Results for query 'select d where (Abraham, child, v0) and (v0, birthdate, d)':
d = 1843-08-01

Test passed: Abraham, rdf:type, Person

Test passed: Robert, uncle, Tommy

Passed 2 of 2 tests.

Ran 5 queries.

Fig. 12. Results of `̀ executing" the model in Fig. 11.

Uni¯ed English-Like Representation of Semantic Models, Data, and Graph Patterns 227

Gender as a sub-class of something. If that quick ¯x is chosen, the inserted statement

will highlight the name of the super-class, allowing the modeler to simply type the

name or request a list of possible super-classes.

A good IDE will not only identify possible mistakes and bring them to the

author's attention, the equivalent of continuous spell checking in a word processor,

but will assist the user by substituting recognition for recall. A good example is `̀ code

completion" in a procedural language. Either automatically when input is paused, or

on demand, the IDE will provide a list of possible completions of the current partial

statement or templates of possible statements. For example, if the name of an

instance of a class is typed followed by a dot, a Java IDE will provide a list of ¯elds

that can be accessed and methods that can be called. The modeler need only indicate

a choice and the statement will be completed. Suppose that in the SADL-IDE we

were specifying the test of the next to the last line in Fig. 11 and we were unsure of

the class name. By pressing cntrl-space with the cursor at the end of the line (line 18

in Fig. 14), a list of available class names appears and the appropriate one can be

Fig. 13. Error markers and two quick ¯xes for missing de¯nition of Gender.

Fig. 14. Result of content assistance request in incomplete test statement.

228 A. Crapo & A. Moitra

selected, as shown in Fig. 14. The display of pre¯xes is controlled by a preference

setting.

4.3. Navigation

Another example of modeler support is the hyperlinking of a name to its de¯nition.

This allows an author to easily navigate from any place where a concept is used to its

de¯nition. Or perhaps the de¯nition is shown in a popup window when the cursor is

placed over the name. In the SADL-IDE, a right mouse click and selection with the

cursor over a concept other than in its de¯nition will cause the model containing the

de¯nition to be opened, if the de¯nition is not in the current model, and the de¯nition

will be brought into view. These and many other authoring aids make modelers more

productive and reduce the number of errors in their models. The SADL-IDE contains

a number of useful supporting functions and more are planned for the future.

4.4. Versioning

One of the important things we have learned from decades of software development,

if not from even earlier experiences with documents such as legal contracts, is that it

is important to clearly identify version information so as to be able to distinguish

between subsequent versions of an artifact, especially one that is easily and often

rapidly changing. Sophisticated version control systems now exist and are integrated

into IDEs such as Eclipse. Version control systems that will be familiar to pro-

grammers include Concurrent Versions System (CVS), Subversion (SVN), and Git.

These systems embed version information within code ¯les or documents, allow

di®erences between versions to be easily identi¯ed, manage the merging of modi¯-

cations made in parallel by multiple modelers, allow branching and subsequent

merging of the version tree, support the tagging of a set of code ¯les or documents as

a named set, etc. This kind of support is essential to successfully managing the

evolution of a model or set of models over their useful life. The SADL-IDE o®ers all of

these capabilities by virtue of being Eclipse-based.

4.5. Semantic checking and regression testing

In logical models, and increasingly in software models as well, tools often check the

models not just for syntactic validity (the equivalent of spelling and grammar

checking) but for semantic validity as well. For example, validation of an ontology

might include checking to see if any class is de¯ned and restricted in such a way that

no instance could ever belong to the class. Ideally the tools would tell us if the model

makes sense. The SADL-IDE provides some level of semantic checking, although

much more is needed. Figure 15 shows the warning message when the same property

is restricted to a single value of a given type in multiple statements. This alerts the

user that quali¯ed cardinality constraints are not supported as SADL currently uses

OWL 1.0.

Uni¯ed English-Like Representation of Semantic Models, Data, and Graph Patterns 229

Since such capability is di±cult to achieve, less capable but still very useful

approaches are often used. One is to develop a suite of comprehensive tests that

exercise a model and determine that for a given set of inputs the model generates the

correct outputs. A model that includes tests is shown in Fig. 11. A test suite is a

simple ¯le that identi¯es all of the models which should be tested, meaning their tests

should be executed. When a test suite is executed, a summary of tests failing and

tests passing is reported. In addition, the output of the test execution includes

hyperlinks to each test executed. Such a test suite allows the model to be exercised

regularly and/or whenever any change is made to the model in order to make sure

that the model still produces the correct results for a variety of inputs. It is not the

purpose of this paper to go into the details of test generation and coverage, but we do

note that continuous testing is a proven way of increasing the quality and reliability

of computational models.

4.6. Debugging derivations

A companion capability that is essential in a modeling tool suite is the ability to

¯gure out why a test is failing. Debugging capability allows the modeler to analyze

the computation occurring in a given test case scenario and understand where model

behavior deviates from that expected by the test case. For procedural code this is

often done by allowing the modeler to set break points in the code and step through

the code in various ways, examining the values of variables at each step. In

declarative models it makes less sense to analyze the process, as this is the process of a

general purpose reasoner, and more sense to answer questions such as `̀ How was this

statement inferred?" or `̀ Why wasn't this statement inferred?" While it is very

important to be able to analyze why an incorrect answer was inferred by a logic-

based model, it can be even more di±cult to analyze why a desired statement was not

inferred. An answer to either of these questions can be obtained by the following

SADL statement.

If the statement is true and was inferred, the derivation of the statement (the

chain of rules and matching conditions that resulted in the inference) will be dis-

played. If the statement is not true, a search will be made for rules which could infer

Fig. 15. Warning regarding a possible semantic error in the model.

230 A. Crapo & A. Moitra

this statement and each of those rules will be checked to see if their premises are

matched in the current data graph. (Note that this check does not currently handle

rule built-in functions.)

A more precise diagnostic statement for use when a rule is expected to ¯re but

does not is the following SADL statement.

This statement will cause a check to be made to see how the premises of the rule

are or are not satis¯ed in the current data graph.

5. Other Controlled-English Languages

Over the years, a large number of Controlled Natural Languages have been designed

to address varying knowledge representation and communication needs. A very

through survey of 99 English-based Controlled Natural Languages can be found in

[10]. This work also provides a framework for classifying and comparing these

languages. This classi¯cation is done on 4 dimensions: precision, expressiveness,

naturalness and simplicity and is abbreviated as PENS. Each dimension in turn is

assigned a value from one to ¯ve. To illustrate this classi¯cation scheme, English is

classi¯ed as P1E5N5S1 and propositional logic is classi¯ed as P5E1N1S5; representing

two extreme points.

One interesting English-based Controlled Natural Language is the Attempto

Controlled English (ACE) [5]. It is a subset of English de¯ned by associated syntax

and interpretation rules. Its intended use is similar to our motivation for SADL;

allowing people to specify formal models without requiring programming skills. ACE

text is translated into Discourse Representation Structures (DRS) which are a

syntactic variant of ¯rst-order logic [6]. Each noun in an ACE text must be intro-

duced by a determiner, and this determiner allows mapping to a universal or an

existential quanti¯er. Interpretation rules are used for entity reference resolution.

ACE has been a part of the Attempto project at the University of Zurich since 1995

and version 6.6 was released in 2011.

ACE is classi¯ed as P4E3N4S3 [10] and we believe that SADL is P5E3N4S4. A value

of 4 for precision corresponds to languages which are or can be de¯ned by a formal

grammar but whose representations may require background axioms or heuristics,

etc., for deductions. A value of 5 for precision is assigned when the language is fully

speci¯ed both at the syntactic and semantic level and each text has exactly one

meaning that can be automatically derived. In regard to simplicity, a value of 3

corresponds to languages with lengthy descriptions ��� the language can be de¯ned

but requires more than 10 pages. A simplicity value of 4 corresponds to a language

with a short description; more than one page and less than 10 pages. (Please note

that we have done more in these pages than describe the SADL language.) The

ANTLR grammar ¯le for SADL is about 620 lines, including comments and blank

lines and many short, indented lines for readability.

Uni¯ed English-Like Representation of Semantic Models, Data, and Graph Patterns 231

6. Some Examples of How SADL Has Been Applied

We have been using SADL for a number of years and it has also been made available

as Open Source [18]. In this section we describe brie°y and provide references to

papers describing three SADL applications that illustrate and highlight di®erent

needs that were addressed.

6.1. Modeling multi-level secure domains

The ¯rst application involved modeling multi-level secure domains and how data

provenance can °ow and be manipulated as it crosses security boundaries [11–13].

This work required the development of complex models to capture the domain

knowledge and even more complex rules to capture and manipulate con¯dentiality,

integrity and assurance properties around data. We used the developed framework to

model the proto-typical sensor-analyst-shooter scenario where the information °ows

from higher security level domains to lower security level domains as illustrated in

Fig. 16 [12].

6.2. Semantic model of smart grid

The second application applied semantic models to the smart grid domain by pro-

viding rules for network traceability. This application showed how we could extend

and build upon existing models (the CIM network model of NIST) [16] and how we

Fig. 16. Data Provenance (DP) and its Figure of Merit (FoM) in multi-level secure domains.

232 A. Crapo & A. Moitra

were able to use AllegroGraph to do backward chaining for network traceability

[3, 4]. Figure 17 shows a model that imports the CIM model and extends it with

several rules that check for well-formedness of the network.

6.3. Integrating semantic models with other tools

The third application involved the integration of a semantic model with a CAD

platform like Unigraphics so that we could bring together manufacturability rules

and design rules in order to support design for manufacturability and reduce product

design cost and lead-time [17]. An illustration of this is shown in Fig. 18 where rules

corresponding to checking the design of sheet metal parts are integrated within a

CAD system.

uri "http://sadl.imp/GridInteropExample".

import "SelectedCim.sadl" as SelectedCim.

// Desired relationship of a Breaker to a Disconnector on each side:
// Disconnector1 --toConnect--> TerminalD1C1
// --connectivityNode--> ConnectivityNode1
// --terminal--> TerminalC1B --fromConnect--> TheBreaker
// --toConnect--> TerminalBC2 --connectivityNode --> ConnectivityNode2
// --terminal--> TerminalC2D2 --fromConnect--> Disconnector2

Rule Breaker IsolationConforms
given b is a Breaker
if e1 is toConnect of connectivityNode of terminal of fromConnect of b

e2 is fromConnect of terminal of connectivityNode of toConnect of b
e1 is a Disconnector
e2 is a Disconnector

then
isolationCompliance of b is true.

Rule BreakerIsolationFromViolation
given b is a Breaker
if e is toConnect of connectivityNode of terminal of fromConnect of b

e is not a Disconnector
then

isolationCompliance of b is false.

Rule BreakerIsolationToViolation
given b is a Breaker
if e is fromConnect of terminal of connectivityNode of toConnect of b

e is not a Disconnector
then

isolationCompliance of b is false.

Fig. 17. Importing and extending existing models.

Uni¯ed English-Like Representation of Semantic Models, Data, and Graph Patterns 233

7. Summary and Conclusions

The idea for SADL grew out of conversations at the Automated Software Engin-

eering Conference in Atlanta in 2007. The syntax and grammar evolved as we built

snippets of engineering models and showed them to SMEs. If the expert immediately

started talking to us about what was right or wrong with the model and what else it

needed to include, we considered that representation a success. If the expert asked us

what the representation meant it was a failure. In other words, we wanted the

domain experts to be able to at least understand a model, if not develop one, without

having to think about the language. We were surprised by the degree to which we

succeeded, at least at the understanding level. As we have described in this paper, the

IDE support attempts to address the ease of authoring.

There are many more capabilities that could easily be added to the SADL

language and environment. For example, it would be nice to be able to view the

neighborhood of a class or instance as a visual graph. It is less clear that large,

detailed graphs are really useful. A visual graph of the import hierarchy of a model

with many constituents would also be very useful. These and many other support

capabilities are very doable. It is only a question of resources. If SADL continues to

¯nd successful application, helping domain experts to have greater impact through

Fig. 18. Integrating rule checking within a CAD design tool.

234 A. Crapo & A. Moitra

knowledge capture and knowledge services, we expect to continue our work. That is

certainly our aspiration.

Acknowledgments

The authors would like to thank Michael Graham for his continuing support of this

work.

References

[1] AllegroGraph. http://www.franz.com/agraph/allegrograph/.
[2] Apache Jena. https://jena.apache.org/.
[3] A. W. Crapo, X. Wang, J. Lizzi and R. Larson, The semantically enabled smart grid in

Grid Interop, 2009, http://www.gridwiseac.org/pdfs/forum papers09/crapo.pdf (accessed
September 9, 2010).

[4] A. Crapo, K. Gri±th, A. Khandelwal, J. Lizzi, A. Moitra and X. Wang, Overcoming
challenges using the CIM as a semantic model for energy applications, in Grid Interop,
2010. http://www.smartgridnews.com/artman/uploads/1/crapo gi10.pdf.

[5] N. E. Fuchs, K. Kaljurand and G. Schneider, Attempto Controlled English meets the
challenges of knowledge representation, reasoning, interoperability and user interfaces, in
FLAIRS 2006.

[6] N. E. Fuchs, K. Kaljurand and T. Kuhn, Discourse representation structures for ACE
6.6, Technical Report 2010.0010, Department of Informatics, University of Zurich.

[7] P. N. Johnson-Laird, Mental Models: Towards a Cognitive Science of Language, Infer-
ence, and Consciousness (Harvard University Press, Cambridge, MA, 1983).

[8] P. N. Johnson-Laird, The Computer and the Mind (Harvard University Press, Cam-
bridge, MA, 1988).

[9] P. N. Johnson-Laird, Human and Machine Thinking (Lawrence Erlbaum Associates,
Hillsdale, NJ, 1994).

[10] T. Kuhn, A survey and classi¯cation of controlled natural languages, Computational
Linguistics, 2014, MIT Press.

[11] A. Moitra, B. Barnett, A. W. Crapo and S. J. Dill, Data provenance architecture to
support assurance in a multi-level secure environment, in MILCOM 2009, 2009.

[12] A. Moitra, B. Barnett, A. W. Crapo and S. J. Dill, Addressing uncertainty and con°icts
in cross-domain data provenance in MILCOM 2010, 2010, pp. 1764–1769. http://
202.194.20.8/proc/MILCOM2010/papers/p1764-moitra.pdf.

[13] A. Moitra, B. Barnett, A. W. Crapo and S. J. Dill, Using data provenance to measure
information assurance attributes, in Provenance and Annotation of Data, Revised
Selected Papers/Vol. 6378/International Provenance and Annotation Workshop, Troy,
NY, June 2010.

[14] Notation3 (N3): A readable RDF syntax. http://www.w3.org/TeamSubmission/n3/.
[15] OWL Web Ontology Language Reference: W3C Recommendation, 10 February 2004,

available on-line at http://www.w3.org/TR/owl-ref/.
[16] S. Quirolgico, P. Assis, A. Westerinen, M. Baskey and E. Stokes, Towards a formal

common information model ontology, Web Information Systems ��� WISE 2004 Work-
shop, LNCS, Vol. 3307, 2004, pp. 11–21.

[17] A. Rangarajan, P. Radhakrishnan, A. Moitra, A. W. Crapo and D. Robinson, Manu-
facturability analysis and design feedback system developed using semantic framework,
in Proc. ASME 2013 International Design Engineering Technical Conferences (IDETC)

Uni¯ed English-Like Representation of Semantic Models, Data, and Graph Patterns 235

and Computers and Information in Engineering Conference (CIE), Aug 4–7, 2013,
Portland, Oregon, USA.

[18] Semantic Application Design Language (SADL), Open Source project on Source Forge,
overview at http://sadl.sourceforge.net/sadl.html.

[19] J. F. Sowa, Knowledge Representation: Logical, Philosophical, and Computational
Foundations (Brooks Cole Publishing Co., Paci¯c Grove, CA, 2000).

[20] SPARQL Query Language for RDF: W3C Recommendation 15 January 2008, available
online at http://www.w3.org/TR/rdf-sparql-query/.

236 A. Crapo & A. Moitra

View publication statsView publication stats

https://www.researchgate.net/publication/263975301

	TOWARD A UNIFIED ENGLISH-LIKE REPRESENTATION OF SEMANTIC MODELS, DATA, AND GRAPH PATTERNS FOR SUBJECT MATTER EXPERTS
	1. Introduction
	2. The World (in Our Head) Is a Graph
	3. More about Formal, Graph-Based Models and How They Differ from Informal Models

